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Abstract. Random chaotic burst generation was experimentally observed in a single-mode microchip
Nd:YVO4 laser with fiber feedback. As the feedback strength was increased, a transition from stable relax-
ation oscillation state to unstable random chaotic burst state appeared. Furthermore, the non-stationary
characteristic of probability association was experimentally identified at the transition of the two states
while similar characteristics were reported only by numerical simulations of simple dynamical systems.
This implies the general feature of non-stationary property of the dynamic switching between two states at
transition. The observed chaotic burst generation and non-stationary nature were reproduced numerically
based on the Lang-Kobayashi model.

PACS. 42.55.Rz Doped-insulator lasers and other solid state lasers

1 Introduction

Studies on nonlinear dynamics have explored the funda-
mental mechanisms of the onset of complex phenomena.
The dynamic features of such phenomena are usually de-
scribed by a probability distribution in which a station-
ary assumption is required [1]. By “stationary” we mean
that after transient, the probability distribution used to
describe the dynamic variable remains the same; “non-
stationary” means that the probability distributions be-
have differently. Non-stationary processes can easily oc-
cur due to fluctuations in the control parameters and
the characterization of non-stationary properties is of cur-
rent interest [2]. In deterministic diffusion [3] with a time
series {xi}, the probability association, which is formed
by the connection between P (∆xk) of different k where
P (∆xk) (k = 1, 2, ...) is the probability distribution of
∆xk = xn+k−xn, can be regarded as a simple way of dis-
tinguishing different forms of chaos and their geometric
structure in ecological data or biological time series where
standard dynamical system theory techniques can not be
applied easily. It has been shown that a non-stationary
characteristic of probability association exists in chaos.
Such a novel characteristic is inherent in dynamic sys-
tems at the onset of weak chaos [4]. Furthermore, it has
also been shown that a stationary probability distribu-
tion P (∆xk) occurs for strong chaos (characterized by a
large positive Lyapunov exponent) and a non-stationary
distribution for weak chaos (characterized by a positive
but small Lyapunov exponent) [5].

a e-mail: tslim@phys.ncku.edu.tw

In practical systems, delay and/or feedback is in-
evitable. Dynamics of delayed-feedback systems is of infi-
nite dimensions and it is important to various fields, in-
cluding physics, chemistry, biology, economics, physiology,
neurology, and optical systems. Paradigmatic examples of
delayed dynamics are the Ikeda model for optical turbu-
lence in nonlinear optical resonators and the Mackey-Glass
model for physiological systems [6]. In the past decades,
the instabilities of nonlinear optical resonators and lasers
with delayed feedback attracted much attention. A laser
diode (LD) with optical feedback has been an attractive
system in investigating chaotic dynamic in optics. Optical
feedback gives rise to periodic and chaotic oscillations in
the laser output power and sometimes leads to internal
mode hopping or coherence collapse. One of the unstable
features of laser output is low frequency fluctuation (LFF).
Recently the LFF was explained theoretically, in the view
point of nonlinear dynamics, as the collision between a lo-
cal chaotic attractor and antimode [7], as a chaotic itiner-
ancy with a drift [8,9], or as a competition between stable
and unstable external cavity modes (ECMs) [10].

On the other hand, LD-pumped microchip solid-state
lasers exhibit an extremely sensitive response to the exter-
nal feedback because the photon lifetime τS is extremely
short compared with the fluorescent lifetimes τf [11]. In
short, in microcavity lasers with a large lifetime ratio,
K (= τf/τS), a large amount of reflected light is intro-
duced into the cavity within the lasing time scale ('τf).
Generally, the lifetime ratio of microchip solid-state lasers
ranges from 105 to 107, while K ' 103 in LDs. In
fact, in an early experiment on an Ar-laser-pumped mi-
crochip LNP (LiNdP4O12) solid-state laser with external
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feedback, the random chaotic burst (RCB) instability was
observed in a weakly coupled regime, in which two soli-
tary laser modes were involved [12]. A recent more refined
experiment indicated that RCB instability is caused by
a low-frequency mode-partition noise in multimode LNP
lasers [13].

The main objective of this paper is to show that an
intriguing non-stationary character of the similarity dis-
tribution in peak fluctuation is inherent in a laser sys-
tem with delayed external feedback. An intensity proba-
bility distribution and a probability association analysis
of experimental time series are used to evaluate the non-
stationary property of the laser output. Observed RCB
instability and non-stationary characteristics can be well
reproduced using Lang-Kobayashi (L-K) equations includ-
ing intrinsic noise. This paper is organized as follows. In
Section 2, experimental setup and the general characteris-
tics of laser output are described. In Section 3, the model
of our experimental system, i.e., L-K equations, is illus-
trated. In Section 4, a simple analysis is provided to indi-
cate the importance of time-step difference analysis, i.e.,
probability association. The probability association anal-
ysis is then detailed. Experimental results are shown in
Section 5 and the numerical simulation results based on
L-K equations with phase noise are discussed in Section 6.
We finally conclude our work in Section 7.

2 Experimental setup and general
characteristics

To give a clear picture of our experimental observation
we provide the details of experimental setup as follows.
The schematic diagram of the experimental setup is shown
in Figure 1. The experiment was carried out by utiliz-
ing a typical LD-pumped microchip neodymium doped
yttrium orthovanadate (Nd:YVO4) laser. The Nd:YVO4

laser crystal, which is commercially available from the
CASIX Inc. (CASIX DPO3104), is 1 mm thick and 1%

Nd3+ doped. By specification, the output coupling was
5±2% at 1064 nm.

Since fluctuation is crucial to the results, Nd:YVO4

laser chip was stuck on a 2 mm thick copper mount and
its temperature was kept at 22 ◦C to reduce thermal fluc-
tuation by a temperature controller (ILX LTD-5910B).
A noise filter (ILX 320) was used to eliminate the pump-
ing noise from the current driver. In the mean time, the
high power LD (HPD1010-C; lasing wavelength: 808 nm)
was driven by a low noise LD controller (ILX LDC-3744).
An interference filter was also used to reduce the effect of
pumping light on detection.

The pumping beam from the LD was focused onto the
laser crystal with a GRIN lens (0.22 pitch). The pumping
threshold was 40 mW and in the entire pumping domain,
laser output was in π−polarized TEM00 mode. The light
emitted from the laser was divided into two by a beam
splitter plate (CASIX FBS0404). One of the beams was
for measurement and the other was for feedback. The feed-
back strength κ is calculated by the following formula [14],

κ =
1−Rm

τL

(
η

Rm

)1/2

, (1)

where τL is the cavity round-trip time and is about
1.33×10−11 s for an 1 mm thick Nd:YVO4 chip (the index
of refraction: no = 1.9573), η is the feedback fraction, and
Rm is the facet reflectivity of the laser. The onset of in-
stability, the RCB, is confirmed to be caused by feedback.
Without feedback, the laser output shows a typical re-
laxation oscillation (RO). In feedback path, the laser light
was coupled into a 10 m single mode fiber (Newport F-SY)
and was reflected back to the laser from the open end of
the fiber. To control the feedback strength more precisely
a variable attenuator (Newport 50G20) was inserted into
the feedback loop. For large attenuation, i.e., less feed-
back light, the laser behaves as a solitary laser. For small
attenuation, i.e., more feedback light, the laser output ex-
hibits the RCB instability. However, the feedback is still
very weak. The reduction of threshold caused by feedback
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light was less then 1% (the solitary laser threshold was
40 mW and the laser threshold with feedback was around
39.8 mW).

In measurement, a multi-wavelength meter (HP
86120B) was used to monitor the variation in lasing mode.
The single mode operation maintained from threshold to
110 mW pumping power. The lasering wavelength was
1064.245 nm. To prevent laser light to be fed back from
the measurement part, an isolator (ISOWAVE I-106-2L)
was utilized. We used a low-noise detector (New Focus
1611) to detect the laser output. The ac and dc ports
of the detector were connected to a transient oscilloscope
(HP 54542C) for data acquisition and a spectrum analyzer
(HP 8591E) for power-spectrum analysis.

All experimental results were obtained for a fixed
pumping power of 88 mW. Although the results presented
are for a pumping power of 88 mW, the features we iden-
tified are generic for all the single-mode region. In the ab-
sence of fiber feedback, the laser output exhibited small-
amplitude RO driven by white noise and the relaxation
oscillation frequency (fRO) was about 1.5 MHz. As the
pumping power was varied, fRO increased following the
relation, fRO ∝

√
(W − 1)/(τSτf), where W = P/Pth

is the normalized pumping power and P and Pth are
the pumping power and the threshold pumping power
respectively. The fluctuation in the ac part was around
20 mV, while the dc value was about 150 mV.

The optical power injected into the fiber was estimated
to exceed 3 mW. As feedback strength was increased to
exceed 220τ−1

f , assuming τf = 90 µs, the RCB occurred.
A typical temporal waveform of the RCB is shown in the
lower graph of Figure 2 for κ = 375τ−1. Here, the sam-
pling rate of the oscilloscope is 100 MHz. There are two
kinds of waveform in the graph. One waveform is the small
amplitude fluctuation waveform as shown in the left por-
tion of the graph. The upper graph of Figure 2 shows
the corresponding result of the joint time-frequency anal-
ysis (JTFA) used to explore the dynamics. The analysis
here is based on the short-time Fourier transform with
the Hanning window. The window length is 512 samples,
i.e., 5.12 × 10−6 s. The time interval of each window is
128 samples, i.e., 1.28× 10−6 s. As shown in the left por-
tion of the graph, the laser output intensity oscillates at
a frequency of about 1.5 MHz and its high order har-
monics can be recognized. This is just the main feature of
noise-driven RO. As time evolved, a different kind of wave-
form, spike oscillation waveform, was observed as shown
in the right portion of the lower graph in Figure 2 and the
waveform has been identified to be a chaos based on the
singular value decomposition analysis [15]. As shown by
the JTFA, the main frequency component shifts to about
1 MHz and a broad-band characteristic appears as shown
in the right portion of the upper graph. The insert of the
lower graph of Figure 2 shows a longer temporal waveform.
As the figure shows, the laser output randomly switches
between these two kinds of waveform. Note that the basic
characteristics of the dynamical transition between two
waveforms features a broadening in the rf spectrum. In
transition region, the rf spectrum broadens gradually and
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Fig. 2. General characteristic of the RCB. The lower graph is
the typical temporal waveform of the RCB and the upper graph
is the corresponding the JTFA spectrum. The level of power
spectrum estimate is denoted by the gray level of color. The
insert shows a longer temporal waveform. Here, κ = 375τ−1

f .

the main frequency component shifts downward as shown
in the center portion of the upper graph in Figure 2.

To sum up, the Nd:YVO4 laser emits two kinds of out-
put under different feedback strengths. From κ = 0 to
κ = 220τ−1

f , the laser output exhibits a noise-driven RO
output and is named as the RO state. When κ > 220τ−1

f ,
the laser output randomly switches between the RO wave-
form and the spike oscillation waveform. This is named as
the RCB state. Laser output exhibits different dynami-
cal significance in these states as to be further illustrated
below.

3 Laser model description

The issue of instabilities in the output of lasers which are
subjected to external feedback was initiated by the pio-
neering work of Lang and Kobayashi in 1980 [16]. They
demonstrated the dynamical instabilities in a LD with ex-
ternal feedback which feature sustaining relaxation oscil-
lations. They also confirmed theoretically that the dynam-
ical instabilities take place in the transition process where
the lasing frequency changes from one ECM to another
in a weak-coupling regime. Since our system is essentially
a single-mode laser with weak feedback, we used the fol-
lowing normalized L-K model [16] with Langevin noise
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sources [17] to explore the dynamics.

dS(t)/dt = K{[N(t)− 1]S(t)}
+2κ

√
S(t)S(t− T ) cos θ(t) + FS(t), (2)

dN(t)/dt = W −N(t)−N(t)S(t) + FN (t), (3)

dφ(t)/dt = (ω0 − ωth) +
α

2
K[(N(t)− 1]

−κ
√
S(t− T )/S(t) sin θ(t) + Fφ(t), (4)

where S(t) is the normalized photon density, N(t) is the
normalized population inversion density, φ(t) is the phase
shift, T is the delay time, α is the linewidth enhance-
ment factor, ω0 is the lasing-mode angular frequency,
ωth is the lasing-mode angular frequency near threshold
without feedback, and θ(t) = ω0T + φ(t) − φ(t − T ) is
the phase difference between the output and feedback
beams [14]. The t and T have been normalized with τf .
To simulate the experimental observation, we introduced
the Langevin noise terms into the L-K equations: FS , FN ,
and Fφ for S, N , and φ, respectively. Here, 〈Fi(t)〉 = 0 and
〈Fi(t)Fj(t′)〉 = 2Dijδijδ(t − t′), where i = S, N , and φ.
Here, 〈.〉 denotes time average.

Equations (2–4) would be reduced to a set of typical
class-B laser rate equations for S and N only, as κ = 0.
With these two equations, the system is essentially stable,
i.e., no instability could be observed without introducing
any additional degree of freedom. For a nonzero κ, the dy-
namical behaviors of the equations become very complex
and instability is possible to happen depending on the pa-
rameters. As mentioned above, the laser output exhibits
different behaviors, i.e., noise-driven RO and RCB, under
different κ. The statistic characteristics of the laser output
in each case are supposed to be different. In the following
discussion, we will take the peak values of the laser output
and perform the statistic analysis.

4 Probability association analysis

To identify the transition from the RO state to the RCB
state more clearly, we evaluated the mean and the stan-
dard deviation values of the peak intensities at different
coupling strengths. Using the digital oscilloscope, we re-
peatedly accumulated the time series of the laser output
and identified the discrete peak values, Sp,n, where Sp
is the peak of laser output and n denotes the nth peak.
To obtain a reliable probability, a total of 320 000 peaks
were collected at each specific rotation angle of the at-
tenuator (i.e., the feedback strength). Asymptotically, as
κ→ 0, the system features a free-running laser such that
the mean and the standard deviation values of Sp are
small. For larger κ, due to the appearance of chaotic spik-
ing waveform, the mean values of Sp should become large.
In the meantime, due to the random switch between the
RO waveform and the chaotic spiking waveform, the stan-
dard deviation values of Sp should be also large. Figure 3
shows the mean and standard deviation values of Sp as a
function of feedback strength κ. Indeed, small mean val-
ues and standard deviation values feature the RO state
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ties Sp at κ = 130/τf (�), κ = 220/τf (•), and κ = 375/τf (◦).
Two solid lines are the fitting curves in the form of a0ea1Sp

and b0eb2(Sp−b1)2 .

in the small κ regime and large mean values and stan-
dard deviation values feature the RCB state in the large
κ regime. There is a dramatic increase in both mean and
standard deviation values at a feedback strength of around
κ = 220τf , which implies the onset of the RCB instability.

Next, we calculated the probability distribution of the
peak intensity for different feedback strengths. In the RO
state, which exhibits noise-driven RO, the probability dis-
tribution of the peak power, P (Sp), followed an exponen-
tial law and featured shot-noise characteristics as shown
by the empty diamond symbols in Figure 4. However, by
increasing the feedback strength, a tailed probability dis-
tribution was created, as shown by the filled circle symbols
in Figure 4. Focusing on the time domain in which large-
intensity spike oscillations dominated, a Gaussian distri-
bution is seen, as shown by the open circle symbols in Fig-
ure 4. This indicates that there are two dynamical states
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that follow different statistics (i.e., shot-noise character-
istics and Gaussian distribution, as indicated by the two
solid fitting lines, which are in the form of a0ea1Sp and
b0eb2(Sp−b1)2

respectively, in Fig. 4). They are mixed in
the RCB state, yielding a tailed probability. By a joint
probability analysis similar to that used in reference [18],
such a mixed distribution which implies that there is still a
strong overlapping between two probability distributions
can be identified. This suggests that the interplay between
two states may be rather unique where the statistics on
time-difference should be crucial.

From the point of view of a stochastic process, the in-
troduction of a probability distribution to chaos means
that a variable, e.g., xn, can be described as if it were
generated by a “random” number generator with a certain
probability distribution. In terms of the probability distri-
bution, the connection between two variable xi+k and xi,
which are associated with each other with a k time step
difference, is

xi+k = xi + ξ,k, (5)

in which ξ,k is a number from a probability distribution
P (ξ,k), when the value i is chosen arbitrary. The connec-
tion between P (ξ,k) of different k forms a probability asso-
ciation. For stochastic systems and some common types of
chaos, there is a limit for P (ξ,k) as k →∞. However, this
feature is not always true as shown in reference [4] that a
non-stationary property does exist in some systems. This
non-stationary probability feature indicates some novel
statistical characteristics of the quantities with time dif-
ference in chaos.

Explicitly, as illustrated in reference [4], the analysis
was performed as follows. In the beginning, we accumu-
lated a long enough time series of the peaks of laser out-
put, {Sp,n}, n = 1, ..., N ′, after the transient. Similar to
the consideration applied to deterministic diffusion or just
because the memory of the initial conditions will be lost
as the time difference increases, we looked at the dynamic
behavior of a k−step difference quantity, i.e.,

∆Sp,k = Sp,k+l − Sp,l, (6)

rather than Sp,l itself. Here l can be 1, 2, ..., N(N < N ′).
The maximum and the minimum of ∆Sp,k can be deter-
mined. We further divided the range of ∆Sp,k into M in-
tervals according to the resolution ability we have. We can
count the numbers of ∆Sp,k appearing in each interval.
After dividing these numbers with the total number N ,
we derived a probability distribution P (∆Sp,k) of ∆Sp,k.
Next we investigated the “association” of two probability
distributions, i.e., P (∆Sp,k+j) and P (∆Sp,k), by calculat-
ing a χ2 which is defined as

χ2(j; k) =
M∑
i

(Ri − Si)2

(Ri + Si)
, (7)

where Ri and Si are the probabilities of the ith interval for
P (∆Sp,k+j) and P (∆Sp,k), respectively. The summation
was carried out for all intervals except Ri = Si = 0. In
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this paper, we set j = 1. Obviously, two similar probability
distributions result in a small χ2. If the two probability
distributions differ very much, we get a large χ2. This
is much like the so-called chi-square statistics [19]. The
evolution of the association of probability distributions
can be described by χ2(j; k), as k is varied. This χ2 is our
main characterization tool.

5 Experimental results

In the experiment, we calculate χ2(1; k) for k =
1, 2, ..., 200 and take the average value of these 200 χ2(1; k)
to be χ2(1). Figure 5c shows χ2(1) as a function of κ. χ2(1)
values are almost zero for small κ, i.e., the RO state. The
interesting point is that χ2(1) value peaked at κ ∼ 220τ−1

f ,
which corresponds to the transition point referring to Fig-
ure 3. Note that at transition the probability distribu-
tion drastically changes from the shot-noise character to a
tailed distribution. This shows that the transition is asso-
ciated with a non-stationary characteristic, so successive
changes in similarity occur wildly. At a larger feedback
strength, i.e., the RCB state, χ2(1) becomes small again.
Although the mean and the standard deviation values are
large due to the chaotic spike burst in this regime and
the laser output is of instability for small time scales, the
statistic character is unstable for large time scales. This
peculiar feature is due to the fact that the increase in feed-
back strength causes longer staying times in any of the two
states (i.e., the noise-driven RO and the chaotic spiking
oscillation) before the random switches taking place. As a
result, the successive changes in similarity became small.
This transition has been found to occur at the same feed-
back strength independently of the total number of peaks
point employed for calculation.
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Figures 5a and 5b present χ2(1; k) for different k near
and after the transition. As shown by Figure 5a, χ2(1; k)
near the transition never goes to zero, which suggests that
the instability has a strong non-stationary nature. On the
other hand, after transition, the χ2(1; k) is almost zero
as shown in Figure 5b. Besides, κ can be transferred to
the effective coupling parameter C = κT

√
1 + α2 such

that the criterion for the existence of only one ECM, i.e.,
C < 1, can be justified [14]. Here, we should emphasize
that when we are measuring some physical properties,
such as mean and standard deviation values as shown in
Figure 3, we assume the experimental system is stationary,
i.e., all parameters of the studied system relevant for its
dynamics are fixed and constant during the measurement
period, in advance. This is true for most of the physi-
cal systems. However, in some physical systems, this can’t
be true. Nevertheless, the stationary/non-stationary prop-
erty could be characterized by the probability association
analysis. In our experimental system, a stationary to non-
stationary nature is well characterized by χ2(1) and that
the weak-feedback-induced instability in the present sys-
tem is associated with wild and non-stationary successive
changes in the similarity of the variation probability distri-
butions. Similar instability has been observed for various
fiber lengths (3, 4, 5, 7, and 100 m). In addition, the in-
stability was observed independently of the pump power
level in the regime of single-mode operation.

6 Numerical results

We explored the observed instability by simulating the L-
K model, assuming relevant parameters of the microchip
Nd:YVO4 laser with fiber feedback: W = 1.3τ−1

f , K =
2 × 105, α = 1, ωth = 1.6 × 1011 radτ−1

f , and κ = 5τ−1
f .

In this case, only one single ECM solution was obtained
as the steady-state solution of equations (2–4). The sys-
tem presents either stable output or periodic spiking, de-
pending on ωth, in the absence of noise. When a phase
fluctuation (i.e., the white Gaussian FM noise) was in-
troduced into ωth, the RCB state could be easily repro-
duced as shown by the inset in Figure 6, where DSS =
DNN = O(ε) (ε � 1 is the spontaneous emission coeffi-
cient) and Dφφ = 7.5 rad2τ−2

f were assumed. The excel-
lent agreement between the experimental and numerical
results is considered to the result of an FM-noise expected
in the Nd:YVO4 laser [13,20].

The result of probability association analysis based on
χ2(1) statistics is also shown in Figure 6. A non-stationary
characteristic at the transition point, κ ∼ 3.3/τf , featur-
ing a large χ2(1), can be seen. This agrees with the experi-
mental results shown in Figure 5. In numerical results, the
onset point of the instability varies when the parameters,
such as α, K, and ωth, vary. However, the non-stationary
feature at transition persists.

A similar onset of transition was reproduced numer-
ically with different fiber lengths and pumping powers,
where the RCB state appeared with a smaller FM noise
when the feedback length (external cavity mode spac-
ing) was increased (decreased). In the case of 10 m fiber
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Fig. 6. Typical numerical simulation result of χ2(1) for dif-
ferent κ. A typical temporal waveform of the RCB due to the
feedback is inserted above.

feedback, for example, the frequency fluctuation of a few
MHz in the solitary laser resulted in the RCB state. This
matches quite well with a linewidth of 2 MHz measured
by a high-resolution scanning Fabry-Perot interferometer.

7 Conclusions

In conclusion, we have clarified the non-stationary na-
ture in a single-mode microchip Nd:YVO4 laser with weak
feedback. The non-stationary character was found to be
greatly pronounced at a particular feedback strength (i.e.,
transition point) at which switching from the RO state
to the RCB state takes place. In the meantime, our sim-
ulations based on the Lang-Kobayashi model with FM
noise have reproduced the RCB state. Furthermore, non-
stationary nature and the existence of the transition point
can be numerically identified.

The non-stationary feature of probability association
has been found in some simple nonlinear dynamic sys-
tems numerically as shown in references [4,5]. Such a non-
stationary feature is inherent in dynamic systems at the
onset of weak chaos. Indeed, it has also been shown that a
stationary probability association occurs for strong chaos
and a non-stationary probability association occurs for
weak chaos. However, it should be noted that investiga-
tion of non-stationary feature of probability association
based on experiment is still scant. In our experimental re-
sults, the non-stationary characteristics persisted at the
transition between the RO state and the RCB state. This
feature can be well reproduced by the numerical simula-
tion of complicated L-K equations with strong phase fluc-
tuation. The finding reported (experimental as well as nu-
merical) here should be of interest to nonlinear dynamics.
Indeed, we have seen that the onset of new statistics (i.e.,
non-stationary characteristics) strongly related to some
physical characteristics, i.e., chaotic spiking. Finally, the
characterization of Lyapunov exponent based on experi-
mental time series is also an important work and it is on
progress as the future work.
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